A NEW SYNTHESIS OF t-AZOALKANES

Werner Duismann, Hans-Dieter Beckhaus and Christoph Rüchardt* Chemisches Laboratorium der Universität Freiburg, D-73 Freiburg, Albertstr. 21

(Received in UK 22 November 1973; accepted for publication 6 December 1973)

t-Azoalkanes $\underline{3}$ have been widely used as radical generators for the investigation of the mechanisms of homolytic reactions¹⁾ and they are potential high temperature initiators in applied chemistry. Most procedures for their preparation are oxidations of primary t-alkylamines by one of several known oxidation pathways²⁻³⁾. An exception to this principle is the synthesis by chlorination of ketazines $\underline{1}$ and the successive alkylation of the chloro azoalkanes $\underline{2}$ by Grignard reagents or lithium alkyls⁴⁾. The yields in this process are, however, generally poor.

None of the known preparative procedures are suited to general large scale syntheses for t-azoalkanes $\underline{3}$.

A general synthesis adaptable for this purpose is reported here in the reaction of chloro azoalkanes $\frac{2}{2}$ with excess trialkyl- or triphenyl aluminum in petrolether at $-70^{\circ} - 0^{\circ}$ C. In simple systems yields between 80 and 100% are obtained and even highly sterically hindered azoalkanes can be prepared conveniently in good yields. Competitive side reactions are the formation of ketazines $\frac{1}{2}$ and of secondary azoalkanes by hydride transfer in the hindered systems. The reaction can be performed on a molar or larger scale. This makes t-azoalkanes available for the investigation of their thermal and catalytic decomposition as well as their use as initiators or intermediates in syntheses.

265

Preparation of Ketazines 1

1.1 Mole ketone, 0.5 mole 85% hydrazine hydrate and a few drops conc. HCl are i refluxed for 3 hs. For hindered ketones reaction periods of up to 100 hs and the use of 100% hydrazine are recommended. For solid ketones such as 2-adamantanone petroleum ether solutions are used. The cooled reaction mixture is extracted with ether and the ketazines $\underline{1}$ are isolated from the neutral and dry organic phase by distillation.

Preparation of Chloro Azoalkanes 2^{5}

A dilute petroleum ether solution of the ketazine $\underline{1}$ is cooled to -60[°] and saturated with chlorine until the yellow colour persists. The excess chlorine is then rapidly removed by brief evacuation. During this procedure the chloro azoalkane $\underline{2}$ usually precipitates as colorless crystals, which are collected by filtration and recrystallized from petroleum ether or methylene chloride, if required. The yields are between 65 and 80%.

Preparation of t-Azoalkanes 3

A petroleum ether solution of 0.2 mole trialky1-⁶) or tripheny1-⁷ aluminum in a 1-L three-necked flask under nitrogen is treated between -70° and 0° C with 0.1 mole <u>2</u> in 300 ml petroleum ether. The reaction is usually over after two hours at 25° and only for highly hindered ketones are longer reaction., times of 12 - 14 hours required. The excess aluminum organic compound is destroyed by careful addition of 4:1 benzene-ethanol with external cooling to 0° and the hydrolysis is completed by the addition of an excess of 2 n sulfuric acid. After washing and drying the organic phase, the t-azoalkanes <u>3</u> are isolated by distillation in vacuo or by chromatography on neutral alumina. The azocompounds were characterized by elemental analysis, uv-, nmr- and mass spectrometry. All compounds <u>3</u> showing the characteristic uv-absorption between 364 and 382 nm with $\tau = 15 - 40$ and the M/2-14 peak in the mass spectra. Selected results are recorded in table 1.

		2 + AlR	"3	<u> </u>		
R	R'	R"	% <u>3</u>	bp/mm C	λ max(ε) pm	a)
CH ₃	CH ₃	с ₂ н ₅	100	55/14	364 (21)	Н
Сн ₃	CH3	i-C4 ^H 9	73	94/13	372 (16)	Н
си _з	CH3	1-C ₈ H ₁₇	80		368 (18)	Н
СН3	с ₂ н ₅	с ₂ н ₅	86	88/13	376 (15)	н
CH3	i-C ₃ H7	CH3	76	85/13	376 (16)	Н
сн ₃	t-C4H9	с ₂ н ₅	64	58/.01	378 (17)	н
сн _з	t-C4H9	с _е н ₅	50 ^{b)}	56 ^{°)}	368 (40)	Н
CH3	neo-C5 ^{II} 11	с ₂ н ₅	59	98/.01	378 (19)	Н
i−C ₃ H ₇	i-C3 ^{II} 7	CH ₃	80	91/.01	376 (18)	I
-(CH ₂) ₆ -		с ₂ н ₅	74	98/.01	380 (22)	II
	∧	CH ₃ ⁸⁾	86	166-167,5 ^{c)}	387 (14)	В
		<pre>c_{2^H5⁸)}</pre>	71	78,5-80 ^{C)}	394 (15)	В
Ľ		$1 - C_8 H_{17}^{3}$	83	54-56 ^{C)}	397 (19)	В

Table 1. Preparation of t-Azoalkanes 3

•

a) H = in hexane; I = in isooctane; B = in benzene

b) in benzene

c) Fp.

References

- 1) C. Rüchardt, H.-D. Beckhaus, J. Bonnekessel, H. Böck, E. Dempewolf, F.A. Groeger, V. Golzke, G. Hamprecht, K. Herwig, J. Hinz, P. Lorenz, I. Mayer-Ruthardt, J. Müller, A. Oberlinner and E. Schacht, XXIII. International Congress of Pure Applied Chemistry, Vol. 4, p. 223, Butterworths, London 1971.
- 2) J.W. Timberlake, M.L. Hodges and K. Batterton, Synthesis 1972, 632 and references given.

- 4) J.W. Timberlake and J.C. Martin, J. Org. Chem. <u>33</u>, 4054 (1968)
 D.S. Malament and J.M. McBride, J.Amer.Chem.Soc. <u>92</u>, 4586 (1970)
- 5) S. Goldschmidt and B. Acksteiner, Liebigs Ann. Chem. <u>618</u>, 173 (1958)
 E. Benzing, Liebigs Ann. Chem. <u>631</u>, 1 (1966)
- 6) The donation of triethyl-, tri-l-octyl and tri-isobutyl-aluminum by the Schering AG., Bergkamen, is gratefully acknowledged. Trimethyl aluminum was prepared according to K. Ziegler and H. Lehmkuhl, Methoden der Organischen Chemie (Houben-Weyl-Müller), Vol. 13/4, p. 52, 166, G.Thieme-Verlag, Stuttgart, 1954.
- 7) H. Lehmkuhl, Liebigs Ann. Chem. 719, 40 (1968)
- 8) Prepared by Dipl.-Chem. V. Golzke, Freiburg.